UI Extension Master Gardeners UI Extension Events UI Extension Idaho Landscapes and Gardens Seasonal Topics UI Extension Idaho Landscapes and Gardens Get Answers UI Extension Idaho Landscapes and Gardens UI Extension Idaho's Growing Regions University of Idaho Extension UI Extension Idaho Landscapes and Gardens UI Extension Idaho Landscapes and Gardens Image Map
Aug 172012
 
Revennae grass

Revennae grass serves the role of pampas grass in cold climates. Photo courtesy of Judy Sedbrook

As with any perennial, proper site selection is critical for success with ornamental grasses. Soil preparation in a perennial bed is completed only one time, just prior to planting and must be done properly. First, kill and remove any persistent weeds, especially grasses. Such weeds are difficult to manage once the beds are planted. This may take several months and multiple applications of a systemic herbicide. Except in native naturalized plantings, amend the soil by adding 2-3 inches of well-aged compost or manure. This is especially important in the arid, calcareous soils of southern Idaho. Add the equivalent of 3 lb/1000 sq. ft. of nitrogen in the form of a complete fertilizer, such as 5-10-5.

After amendments are added, the soil should be tilled to a depth of at least 8 inches, leveled, and smoothed (but not packed). Just prior too or after planting, it is a good idea to add two or three inches of mulch (wood chips, bark, etc.) to the soil surface. It may also pay dividends to place some type of edging or border around the bed to slow encroachment of grass or other weeds.

 August 17, 2012
Aug 172012
 

Proper site selection is critical for success with bulbs. The soil must be well-drained and attention given to proper light conditions (full sun for most bulbs).

Shovels in soil

Bulbs require deeply worked soil

Soil in bulb beds should be heavily amended with organic matter. Well-aged compost works well. Application of organic matter should be followed by deep tillage, at least 12 in. deep. The bed should be leveled and smoothed, but not packed. Just prior to or after planting, it is a good idea to add two or three inches of mulch (wood chips, bark, etc.) to the soil surface. It may also pay dividends to place some type of edging or border around the bed to slow encroachment of grass or other weeds.

Planting

Spring flowering bulbs should be planted in the fall. They require a period of cold weather to bloom and because these plants are generally hardy, the best way to provide cold is let them reside in the soil over winter. In Idaho , the best time to spring plant bulbs is late September through mid-October.

Summer flowering bulbs should generally be planted approximately one week after the last frost. To estimate the last frost date in your area, look at the Idaho chart compiled by Ed Hume Seeds. Some bulbs, such as caladiums and begonias will benefit from being started indoors 6-10 weeks before planting outdoors. They should not be taken outside until all danger of frost is past. In much of Idaho , this typically means 2-3 weeks after the last average frost date. Cornell University Suffolk County Extension has compiled a great discussion of planting and managing summer bulbs.

As a general rule, bulbs should be planted two to three times deeper than the top-to-bottom measurement of the bulb itself. Summer flowering bulbs may be exceptions to this rule and planting instructions should be provided on the purchase package. Planting density varies widely according to species and personal preference. Specific instructions for many species are provided in the Dutch Gardens web site. This site also provides pictures, descriptions, and cultivation techniques for many bulbs.

Before planting, an application of fertilizer should be made. Bonemeal or a high phosphate fertilizer should be placed in the planting hole, followed by the addition of a small amount of soil to prevent direct contact of the fertilizer and the bulb, then the bulb planted. This can be followed up with a small amount of a complete fertilizer (equal to 1 to 2 lb nitrogen per 1000 sq. ft.) at the time the plants emerge. Bonemeal should be used with caution around dogs, who are attracted to the scent and may dig up bulbs planted with bone meal.

Additional planting information can be found in sites sponsored by the Rochester Gardening Club and Iowa State University .

Bulbs are planted in the spring (for summer flowering) or fall (for spring flowering). Most bulbs are planted at least 4-8 inches deep, depending on the size. Fertilization at this time is recommended with a product high in phosphorus. Bone meal is an excellent choice,

Another excellent resource is the University of Illinois Bulbs and More web site.

 August 17, 2012
Aug 172012
 
Perennial weeds must be controlled before planting

Perennial weeds must be controlled before planting

Proper site selection is critical for success with perennials. Because the plants will reside in the same place for many years, they must be adapted to conditions where planted. If not, they may never reach their full potential for beauty in the landscape.

Major soil preparation in a perennial bed is completed only one time, just prior to planting. Consequently, to avoid future difficulties it must be done properly to ensure a healthy environment. First, kill and remove any persistent weeds and grass. Such weeds are difficult to manage once the beds are planted. This may take several months and multiple applications of a systemic herbicide. Next, make sure the site has good quality topsoil. This may require addition of topsoil, particularly in new home sites. Amend the soil by adding 2-3 inches of well-aged compost or manure. This is especially important in the arid, calcareous soils of southern Idaho. Add a complete fertilizer such as 5-10-5 at the equivalent of 3 lb/1000 sq. ft. of nitrogen. The fertilizer choice should be high in phosphorus and should preferably include sulfur in southern Idaho.

After amendments are added, the soil should be tilled to a depth of at least 8 inches, leveled, and smoothed (but not packed). Just prior to, or immediately after, planting it is a good idea to add two or three inches of mulch (wood chips, bark, etc.) to the soil surface. It may also pay dividends to place some type of edging or border material around the bed to slow encroachment of grasses or other weeds.

 August 17, 2012
Aug 162012
 

transplanting a seedlingSoil preparation is critical to success with annuals. Proper site and soil preparation will ensure a healthy environment for annual flowers. First, make sure the site has good quality topsoil. This may require addition of topsoil, particularly in new home sites. Amend the soil by adding 3-5 inches of well-aged compost or manure. This is especially important in the arid, calcareous soils of southern Idaho. Add the equivalent of 5 lb/1000 sq. ft. of nitrogen in the form of a complete fertilizer, such as 5-10-5. The fertilizer choice should be high in phosphorus and should preferably include sulfur. After amendments are added, the soil should be tilled to a depth of at least 8 inches, leveled, and smoothed (but not packed). Just prior too or after planting, it is a good idea to add two or three inches of mulch (wood chips, bark, etc.) to the soil surface.

 August 16, 2012
Aug 162012
 

It is important to understand the main nutrients that lawn grasses require for adequate growth.

Nitrogen is perhaps the most important nutrient as it helps the grass produce green, healthy leaves. Since leaves are the energy-making factories of the plant, it is important that enough nitrogen be provided to maximize their energy making capabilities without causing an over production of leaves.

Phosphorus is important for strong root growth and is very important during establishment. Since phosphorus does not move readily in the soil and new grass seedlings have limited root systems, providing some phosphorus fertilizer during establishment is very important. Mature lawns have very fibrous root systems and are much more adept at mining phosphorus from the soil. Generally, unless very deficient, fertilizers with low percentages of phosphorus are used for lawns.

Potassium is very important for lawns and helps grasses respond to heat and drought stress. Although deficiencies in potassium are difficult to detect, the importance of potassium in stress management should not be overlooked. Unless a soil test reveals that potassium is very abundant, fertilizers with percentages of potassium similar to nitrogen should be used.

Iron is another nutrient that is important, especially in southern Idaho soils. The high pH soils of southern Idaho tie up iron making it unavailable to the plant causing it to become yellow (iron cholorosis). Iro- containing fertilizers can help alleviate iron chlorosis, but make sure of the type of iron you are buying. Iron in the forms of ferrous sulfate or iron sulfate are absorbed by the leaves. If washed into the soil, the iron quickly changes form and becomes unavailable to the plant. Iron in the form of iron chelate (Fe-DTPA, Fe-EDTA, Fe-EDDHA, and Fe-HEDTA), are more effective as soil applied fertilizers. Iron in this form is available to the plant even when in contact with the soil and the effect is much longer lasting than the foliar-absorbed iron fertilizers.

 August 16, 2012
Aug 162012
 

The most important part of establishing a lawn is proper soil preparation. One of the main reasons for turfgrass failure is a poorly prepared site with inadequate soil characteristics. New construction in subdivisions requires removal of topsoil to allow contouring for adequate storm water drainage. Too often topsoil is not placed back around homes prior to lawn installation. Understanding the requirements of good seedbed preparation will help the long term success of a lawn.

Using good quality seed is also very important. Read the section on turfgrass selection to choose the correct type of grass for your application. Additionally, make sure to purchase seed that has a high germination rate (85% minimum) and contains minimal weed seed and “other crop seed.”

The best time to seed cool-season grasses in Idaho is late summer and fall for several reasons. Soil temperatures are optimum for seed germination, there is less competition from summer annual weeds, and the newly emerged grass seedlings will not be exposed to summer heat. It is possible to seed a lawn successfully in the spring, but extra care will be needed to help the seedlings along during the hot summer temperatures.

The establishment process includes: Site preparation/rough grading, seedbed preparation, seeding/sodding, post seeding/sodding care.

 August 16, 2012
Aug 142012
 

The type of soil that a tree or shrub grows in can affect its nutrient needs. Soil texture and soil structure influence the amount of water, air, and nutrients held in the soil for plant use. Clay soils can be nutrient rich, but have a large amount of fine particles that tend to compact and restrict water and air movement. Sandy soils drain well, but contain many coarse particles that have little capacity for storing water, air and nutrients. Organic material can be thoroughly mixed into soils with high clay or sand contents to help improve soil structure. Repeated applications may be needed depending on the amount applied and the stage of decomposition or type of organic matter used. Organic material should be mixed into the soil up to several years before trees are installed to obtain maximum benefit.

 August 14, 2012
Aug 102012
 

Proper soil preparation provides the basis for good seed germination and growth of garden crops. The steps of soil preparation include testing, amending, and tilling.

Testing the Soil

Contact your local County Extension Office to get instructions and sample bags for testing your garden soil. Soil tests are especially critical in a new garden plot but soil should be analyzed at least once every 3 years because conditions do not remain static. The soil test will tell you how much organic matter and fertilizer is needed. To get a relibale soil test, you first need to take a proper sample.

Rows of vegetables growingAmending with Organic Matter

Organic matter improves soil structure, increases water-holding capacity, improves fertility, and reduces problems with soil diseases. There is no replacement for organic matter in improving soil health and providing good growing conditions for vegetables.

Organic matter can be added in the form of plant waste (such as leaves or lawn clippings), composts, green manures, or aged animal manures. It is necessary to consistently  add organic matter (every year or two) because it rapidly breaks down in the soil.

Using compost is a preferred method of adding organic matter to the soil. Apply organic matter to the garden area by spreading a layer of compost 3 to 6 inches deep on the soil surface and tilling to a depth of 10 to 12 inches, if possible with available equipment.

Another method of adding organic matter to soil is to use green manures, which are any living plant material that is mixed with the soil while still green. Green manure crops include such crops as, for example, wheat, oats, clover, mustard and vetch. Grow the green manure in the part of the garden where you will later chop it while it is still green and immediately till into the soil.

Animal manures are best applied in the fall so they have time to completely decompose and salts can partially leach out of the root zone before spring planting. It is best to use animal manures that have been aged for one or two years before applying to a garden, or used composted manure.

To make your own compost, see Composting at Home for a detailed discussion of how to do this.

Fertilizing

In this brief format, it impossible to provide fertilizer application recommendations that will apply to every gardening situation. But, whether you prefer traditional or organic methods, some concepts are universal. For one, nothing can replace a soil test for providing the information required to make appropriate fertilizer application decisions. Two, for vegetable gardens, additions of nutrients in some form will be required to consistently grow a good crop. Knowing the amount of fertilizer elements required will make it easier to choose an appropriate product to apply.

Generally, for most Idaho soils, a fertilizer that is relatively high in nitrogen and phosphorus, contains a moderate amount of potassium, and possibly some sulfur will work reasonably well. Follow the fertilizer label directions or contact your local County Extension Office about application rates and methods. Also, UI bulletin, Using Soil Test Results for Garden Fertilization, contains information on interpreting a soil test and how to determine the quantity of fertilizer product to apply.

Fertilizer requirements for vegetable crops vary widely, which complicates fertilizer application decisions. Some crops, such as peas and beets need very little fertilizer. Most long-season crops, such as corn and melons require fairly large amounts (see accompanying table).

Low nutrient-using crops High nutrient-using crops
Bean Broccoli
Beet Cabbage
Carrot Cauliflower
Chard Celery
Lettuce Collard
Parsnip Corn
Peas Cucumber
Potato, early-harvested Eggplant
Radish Kohlrabi
Rutabaga Leek
Spinach Melon
Tomato, short-season areas Onion
Turnip Pepper
Potato, late-harvested
Pumpkin
Squash
Tomato, long-season areas

 

Deciding how to fertilize a vegetable garden should take into account the fertilizer amounts needed by “low-nutrient using” crops vs. “high nutrient-using” ones. If you are planting a garden for the first time, it is almost essential to have a soil test so you know the nutrient status of the soil to help determine how much, if any, fertilizer to apply.

If you have been growing a garden for several years in the same location and have been reasonably satisfied with the production, a soil test may not be essential. However, a yearly application of fertilizer is still likely needed. Using a complete fertilizer product, fertilize your garden with 2 to 3 lb N per 1000 ft2 and immediately till it into the soil at the beginning of the season just prior to planting. This amount should be adequate for the low-nutrient using crops. Then after the plants are up and growing, apply an additional 2 to 3 lb N per 1000 ft2 alongside the row—oftentimes referred to as a “sidedress” application—and water into the soil. For this application, you can use a product that is high in N and low in other nutrients. Use UI bulletin, Using Soil Test Results for Garden Fertilization, to determine actual amounts of fertilizer product to apply depending on the nutrient content of the product purchased.

Sandy garden soils, which do not hold nutrients as well as clay, silt, clay loam, silt loam, and other non-sandy soils, require some modification of the above fertilizer application practices. Only part of the total applied fertilizer should be put down before planting. The rest should be applied in small increments during the growing season. This provides the plants with the required nutrients while reducing losses due to leaching. A soil test will help you determine your soil texture.

Tillage

The final step in soil preparation is tillage. Ideally, soil should be tilled to a depth of at least 10 inches. This can be very difficult with small garden equipment. If larger equipment cannot be used, it may be beneficial to occasionally fracture the soil to a greater depth by pushing a long-tine garden fork deep into the ground and pulling the handle backward to break up the hard lower layers.

It is important to avoid working soil when it is too wet. This is espcecially true for non-sandy texture soil. Working wet soil breaks down the soil structure causing it to become cloddy and hard. The negative impact of tilling wet soil may last for years. To determine if the soil is dry enough to work (till), take a handful and squeeze it tightly into a ball. If the ball breaks into granular pieces when pressed lightly between your fingers, it is dry enough to work. If the ball remains intact and feels sticky when you squeeze it, wait a few days before scheduling tillage operations.

For more information about soils, soil preparation, and fertilizers, study the Idaho Master Gardener Handbook, Chapter 5: Soils and Fertilizers.

 August 10, 2012
Aug 102012
 

Blueberries are among the most popular fruits for home and market gardening. Both highbush and lowbush blueberries are native to North America and are used fresh or processed into jams, syrups, compotes, fruit leathers, and pastries. Blueberries are firm and hold their quality well both on the bush and in refrigeration. The fruits are easy to freeze and retain their quality when frozen. Blueberry crops can be harvested two to three years after planting, and reach maximum production in six to eight years. Several types of blueberries are available to gardeners. In Idaho, select varieties adapted to USDA Plant Hardiness Zones 4-6. As a general rule, for long-lived plants like blueberries, select varieties one, or preferably two, zones hardier than your location.

Besides producing fruit, blueberries are attractive in landscapes. The compact bushes are easy to prune and produce brilliant orange to red foliage in autumn. The fruit attracts birds and other animals, making blueberries valuable in wildlife-attracting landscapes. Depending on the variety, mature bushes range from eighteen inches to ten feet in height.

Download our free how-to guide!
Growing Blueberries in the Inland Northwest and Intermountain West

Blueberries

Expected yield:

  • Half-highs 1 to 3 pounds per bush
  • Highbush 8 to 20 pounds per bush

Age to maturity: 6 to 8 years after planting
Productive life: more than 50 years
Hardiness: -15 to -30°F, depending on variety
Optimal pH: 4.2 to 5.2
Exposure: full sun
Plant spacing:

  • Lowbush: 1 foot between plants
  • Half-highs: 2 to 3 feet apart in rows 6 to 8 feet apart
  • Highbush: 4 to 5 feet apart in rows 8 to 10 feet apart
Selecting a Site

Blueberries require acid soils, which greatly limits where they can be grown in Idaho. A soil pH between 4.2 and 5.2 is ideal (pH 7.0 is neutral). Blueberries can be grown, with some challenges, on sites where the pH is as high as 6.0. Blueberries suffer from iron chlorosis on soils with pH values above 6.0 that are common in southern Idaho and scattered throughout the state.

Soils having pH values between 5.5 and 6.0 can be acidified by incorporating sulfur into the soil one or two years before planting blueberries. Soil acidification is not cost effective for large sites or when soil pH values are above 7.0. For small scale production on sites with heavy soils, poor drainage, or alkaline soils, blueberries can be grown in raised beds or containers filled with potting mixes or amended soil.

Sites with cool, moist, well drained loamy sand, sandy loam, and loam soils containing around 3% or more organic matter are best for blueberries. Coarser soils dry out too easily and clay soils inhibit root growth and encourage root rot. Production on silt loam soils is possible, but can be challenging due to poor water drainage. Muck soils and boggy areas are unsuitable for blueberries unless you can create raised beds at least 14 inches above the soil surface. On some sites, increasing soil drainage with buried drainage tiles can improve blueberry production.

While blueberries survive in partial shade, you need full sun exposure to develop good fruit flavor and maintain high yields. Blueberries grown in the shade become tall, spindly, and unproductive, creating bushes that are unattractive and do not tolerate snow loads well.

Varieties

Blueberries are among the most cold hardy fruits, but there are differences in varieties. The most cold hardy blueberries tolerate temperatures of -35°F or below, and many varieties survive temperatures between -20 and -25°F. Rabbiteye and southern highbush blueberries are not reliably cold hardy in Idaho.

 August 10, 2012
Aug 102012
 

When it comes time to plant a fruit tree, patience pays for itself many times over. Most of the problems we see with tree fruits come from two sources: failing to select appropriate crops for a site and failing to prepare the site before planting. We dealt with crop selection in Tree Fruits: Crops to Grow. Now let’s consider site preparation.

 August 10, 2012
Aug 092012
 

The term “organic farming” was first used in England in the early 1940s, emerging from the biodynamic movement in which a farm was perceived spiritually as a dynamic, living “whole organism.” The concept was brought to the United States in the mid 1940s and widely promoted by J.I. Rodale, founder of Organic Farming and Gardening Magazine (now Organic Gardening) and author of Pay Dirt: Farming and Gardening with Composts and How to Grow Fruits and Vegetables by the Organic Method. Rodale strongly believed in the relationship between living soil and healthy food was achieved by returning animal manures and plant debris to the system by way of composts. The United States Department of Agriculture defines organic as as “an ecological production management system that promotes and enhances biodiversity, biological cycles and soil biological activity. It is based on minimal use of off-farm inputs and on management practices that restore, maintain and enhance ecological harmony.

The growing and selling of produce and products labeled “Certified Organic” is strictly monitored by the United States Department of Agriculture involving a rigorous certification process and complicity with federally mandated regulations for exclusion of non-approved crop management materials, such as synthetic pesticides and fertilizers.

Many home gardeners would like to reduce synthetic chemical use around their children, pets and environment. While they won’t need to certify their backyards, home gardeners may adopt some of the recommended practices to grow flowers, vegetables, fruits and even lawns by using biological and cultural controls, composts, and organic fertilizers along with conventional methods. Some gardeners may choose to completely exclude the use of inorganic fertilizers or growth regulators to reduce dependence on non-renewable resources. Whatever the desire and intent, there are some universally applicable concepts that will help the organic gardener succeed.

closeup of row of seedlings in dirtOrganic vegetable gardening promotes and enhances natural diversity and biological cycles. Rather than relying on synthetic fertilizers and pesticides, organic gardening is based on making the garden self-sufficient and sustainable. You can ease your gardening practices into the organic arena by starting with some of the easier aspects of organic gardening, such as mechanical control of weeds and insect pests.

The first step in this transitioning a garden to organic is improving and maintaining soil fertility and quality. Healthy, fertile soils are basic to successful organic vegetable and fruit production. Management and addition of organic matter, in the form of composts, manures, green manures, and plant residues, is the most important principle to understand for maintaining soil productiveness in an organic system. Organic matter in various forms should be added to the soil annually. There are also many organic fertilizers that can be used to supplement plant nutrition, especially to meet the need for nitrogen and phosphorus. Utah State University has published an excellent organic fertilizer guide, Selecting and Using Organic Fertilizers.

Pest management is the most challenging aspect of organic gardening. Weeds can be controlled with cultivation, pulling, or smothering using mulches. Insects must be closely monitored and controlled using various mechanical methods, predator insects, baits and traps, mild soaps or directed water streams. There are several organically certified insecticides that are useful in the control of insect pests, including Bacillus thuringenisis, insecticidal soaps, rotenone, or natural pyrethrins.

Diseases are best managed through the use of resistant varieties. It is also important to purchase and plant disease-free seed to avoid introducing disease pests into the garden as well as remove and discard diseased plants, rotate annual crops to different places in the garden each year, and keep the garden area free of weeds and dead plant material that may harbor disease organisms. Some leaf-infecting fungi can be controlled using organic fungicides.

A comprehensive list of approved organic materials can be found on the Organic Materials Review Institute web site.

Organic gardening can be simple or complex, depending on the desires of the gardener. There is plenty of good information available on the topic from numerous authoritative sources. Here are some of the best:

View a simple introduction to organic gardening concepts from Mississippi State University

For information on a straightforward, but more detailed approach to organic vegetable gardening, visit this list of University of Florida publications.

For an in-depth discussion of organic soil management principles, read Producing Garden Vegetables with Organic Soil Amendments from the University of Florida.

If you wish to move beyond a cursory understanding of organic gardening practices, select from a series of publications from the University of California, Davis describing detailed organic production principles.

 August 9, 2012
Aug 092012
 

Fertilizing gardens and landscapes is important to maintain healthy growth and acceptable appearance. Under natural forest conditions, the annual decomposition of leaves, needles and twigs provide a fresh resource of minerals for plants to use. Landscapes usually do not have this nutrient source and are in need of additional minerals since landscape debris is routinely hauled away. There is a plethora of products available to fertilize your plants. It is important to understand basic plant nutrition and fertilizer application principles in order to meet garden fertilizer needs.

Sixteen chemical elements are known to be important to a plant’s growth and survival. Three of these, carbon (C), hydrogen (H) and oxygen (O) are acquired by plants in sufficient quantities from air and water. The other 13 mineral nutrients are acquired by plant roots, which absorb soil minerals dissolved in water. These 13 required mineral nutrients are divided into two groups: macronutrients and micronutrients.

The primary macronutrients are nitrogen (N), phosphorus (P), and potassium (K). Primary macronutrients usually are the ones to be depleted from the soil first because plants use large amounts for growth and survival. Expectations are that some amount of these three nutrients will be needed in the garden every year. The secondary macronutrients are calcium (Ca), magnesium (Mg, and sulfur (S). Fertilization with these nutrients is not always needed. Micronutrients are needed in only very small quantities. The micronutrients are boron (B), copper (Cu), iron (Fe), chloride (Cl), manganese (Mn), molybdenum (Mo) and zinc (Zn). In the high pH soils of southern Idaho, levels of S, Fe, Zn and Mn are often deficient.

Calculating fertilizer application amounts can be a daunting task for the novice gardener. Before fertilizing, you must first determine how much of which nutrient(s) are needed. Determining the amount to apply can be made using historical recommendations found in many garden publications, or using the results of a soil test. The most reliable way is a soil test.  Your local count Extension educator can provide instructions for taking a soil sample.

Next, nutrient content or grade of the fertilizer must be determined. This information is found on the fertilizer package in the form of three numbers. For example, if the fertilizer grade is listed as 10-10-5, the fertilizer contains 10% nitrogen (first number), 10 percent phosphorus (second number), and 5% potassium. If there is a fourth number, it is the percentage of sulfur. The numbers on a fertilizer package are always in the same order, nitrogen-phosphorus-potassium.

The final piece of information that is needed is the land area to be fertilized. Once all of these factors are known, refer to the bulletin Using Soil Tests Results for Garden Fertilization to determine the amount of fertilizer material to apply. For information about fertilizing vegetables, refer to the Soil Preparation for Garden Vegetable section in this web site.

Organic materials are available that can take the place of inorganic fertilizers in the garden. Common forms include blood meal, bone meal, cottonseed meal, sewage sludge, composts, and manures. These fertilizers are usually relatively low in nutrient content compared with conventional formulations and sometimes relatively large quantities need to be applied. Especially when purchased pre-packaged, organic materials can be more expensive than inorganic fertilizers. Colorado State University has published a great discussion on organic fertilizers.

Fertilizing in a landscape is complicated by the fact that different plants have different nutrient requirements. For instance, a lawn uses high amounts of nitrogen while trees generally need very little nitrogen, especially in late summer and fall when applications may induce new growth, which may result in winter cold injury. Managing fertility on other types of plants in Idaho is described in these University of Idaho on-line publications:

By accessing the University of Idaho Resources for Idaho catalog, production and fertilization guides for many additional garden plants can be purchased. Peruse the list at: http://www.cals.uidaho.edu/edComm/catalog.asp?category1=Gardening

Sometimes adding materials to the soil may be beneficial in certain geographical areas while detrimental in other areas. For example, addition of wood ashes and lime make acidic soils more alkaline (higher pH). Consequently, these may be good amendments for northern Idaho’s soils, but not for southern Idaho’s calcareous, alkaline (high in lime) soils.

There are other excellent fertilizer guides on-line. These include:

  • A general discussion about fertilizing a home garden is found in the bulletin, Fertilizing Gardens, published by University of Idaho.
  • A good publication, Fertilizing Your Garden, by Oregon State University that provides information on interpreting soil test results, determining fertilizer needs, and calculating application amounts.
 August 9, 2012
Aug 092012
 

Composting is a natural biological process that degrades a diverse mixture of ingredients such as leaves, grass, plant material, etc. into a soil-like material called compost. These degraded organic materials (compost) can then be recycled by applying it to the soil. Composting is a good way to eliminate household and yard waste while at the same time improving garden soil. A healthy soil is critical to gardening success. Composting naturally happens, but we can help speed the process by utilizing techniques that enhance the microbe’s (bacteria and fungi) ability to do their job.

Booted foot pushing shovel into dirtComposting can be pursued at many levels, from a gardener who likes to produce “black gold” to the operation of a multi-acre commercial composting facility. Gardeners who compost their own landscaping and food scraps can follow a few simple guidelines and needn’t worry about complex formulas, chemical equations, or studying microorganisms.

The most common way to compost is to collect organic matter in open piles or place the material into bins or barrels. It is important to use only appropriate organic materials in the compost pile, which includes almost any garden or table waste that is plant-derived. Exceptions are plant materials that may harbor disease, may include noxious weed seeds, or material that has been treated with a persistent herbicide. Materials derived from oily foods or animal products should not be included in a compost pile.

A compost pile is created by layering green plant materials, brown and woody plant materials, and garden soil. Once a pile is constructed, composting success depends on providing microbes with the conditions they need to grow and thrive, which are oxygen, moisture and nutrients. These needs are met by turning (mixing) the pile weekly, occasionally adding water to the pile to maintain good moisture, and adding a small amount of fertilizer that is high in nitrogen. Good compost can be created in as little as six weeks with proper temperature and ideal conditions. With less ideal conditions, it may take much longer.

An optional way to compost is to utilize worms. This technique works for composting inside the home for those who live in apartments or otherwise lack space for the more common ways of composting.

For a comprehensive discussion of composting principles, read University of Idaho bulletin, Composting at Home, or the composting section of the University of Idaho Master Gardener’s Handbook.

See the Penn State site for a simplified version of how do home composting.

Learn how to compost using worms from Washington State University.

 August 9, 2012
Aug 092012
 

The ideal garden soil is deep, friable, well-drained and high in organic matter. Proper soil preparation provides the basis for good seed germination and subsequent growth of plants. Managing soils for optimal plant growth is an ongoing process that consists of proper tillage, adding amendments, and  proper fertilization and irrigation.

pH range in soilSoils in Idaho vary widely due to topography, climate, and origin. In southern Idaho, most soils have a high pH (alkaline) and contain very little organic matter. These soils may need extra applications of phosphorus and micronutrient fertilizers and should never be amended with lime or wood ash.

Northern Idaho soils can have a relatively low pH (acidic) and contain considerable organic matter. Some of these soils may need the pH adjusted upward with lime.

In either location, soils can vary in texture from sand to clay. The pH of soil is important in determining which nutrients will be readily available to plants (see illustration at left). Sandy soils need constant addition of organic matter, frequent and light applications of water, and constant fertilization. Clay soils may need to be amended with organic matter and/or soil amendments to improve water penetration. It is important to know the characteristics of your soil in order to design an appropriate management plan.

garden soil and handRegardless of soil type, careful use of various amendments can improve soil and provide the best possible starting situation for your plants. The best amendments provide organic matter and consist of manures, composts, peat moss, crop residues, grass clippings, green manures, bark, wood chips, straw, or any number of other materials. The type of amendment chosen is dictated by availability and cost.

Before fertilizing or tilling, it is best to get the soil tested for nutrients, pH and organic matter. Several labs, both university and private, will test your soil for a fee. Once you determine fertilizer needs, broadcast fertilizer evenly on the soil surface and till it in. Make sure the soil is not too wet during cultivation to avoid compaction.

It is important to understand that most plants’ nutritional needs are supplied by the soil. Consequently, proper soil preparation will go a long way toward achieving a successful garden.

For more information on soil preparation, see the brief, but excellent Utah State University publication, Preparing Garden Soil.

Washington State University provides a comprehensive guide to soil management.

 August 9, 2012
Aug 062012
 

When planting a fruit tree, dig a hole large enough to hold all of the roots without cutting any of them off and without bending the roots to fit into the hole. A good strategy is to dig the hole, then build a pyramid-shaped mound in the center of the hole and drape the roots over the mound. Be very careful to ensure that, after the soil has settled, the tree is at the same depth it grew in the nursery. Planting trees too deeply often results in collar and root rot and tree death. Also avoid planting too shallowly, which creates an unstable tree and exposes the collar and roots to excessive drying.

Most fruit trees are sold bare root or may come in pots up to about five gallons in size. Plant bare root trees as described above. Container-grown trees are planted similarly, but take particular care to inspect the root ball after the pot is removed and before planting. Use sharp pruning shears to cut through roots that circle around the root ball or cluster on the bottom of the ball. These could result in eventual girdling of the trunk. Be careful not to drop the tree, twist the trunk or root ball, or break open the root ball. Doing so can break off small feeder roots. Always lift trees from the bottoms of the root balls. Never lift a tree and pot or tree and root ball by the trunk.

A simple rule is that the only soil that goes back into a planting hole is the soil that came out of it. Never replace the soil with compost, peat moss, or potting soil. Never create a blend of soil and compost to fill a planting hole. Doing so creates a barrier at the sides and bottom of the hole that makes it very difficult for water or roots to penetrate to the soil outside the planting hole. Essentially, you create a pot without a hole in the bottom. If you want to amend the soil, before digging, apply up to six inches of amendment and till it into the soil across a five- to ten-foot diameter area centered where the planting hole will be.

 August 6, 2012
Aug 062012
 

Gardeners like to improve their soils, and often do so by adding composts, manures, straw, sawdust, or other organic materials. There are both benefits and risks associated with soil amendments. Perhaps the greatest advantages to organic soil amendments are that they can increase water and nutrient holding capacities on light-textured soils and can be sources of plant nutrients.

Amendments also carry risks. Weeds, pests, and diseases can easily be brought into your garden through contaminated organic materials. Woody materials, such as straw, bark, and sawdust, can create severe nitrogen deficiencies in the soil as they decompose. Woody materials are broken down by microorganisms in the soil. These microorganisms take nitrogen from the soil to use for proteins and other compounds in their bodies. Until the woody material is decomposed and the microorganisms die, the nitrogen is unavailable to plants. An excellent strategy to avoid importing weeds, pests, and diseases and to avoid depleting your soil nitrogen is to thoroughly compost organic amendments before adding them to your garden.

Learn more about composting here.

 August 6, 2012